منابع مشابه
Robust Padé Approximation via SVD
Padé approximation is considered from the point of view of robust methods of numerical linear algebra, in particular the singular value decomposition. This leads to an algorithm for practical computation that bypasses most problems of solution of nearly-singular systems and spurious pole-zero pairs caused by rounding errors; a Matlab code is provided. The success of this algorithm suggests that...
متن کاملTime Stepping Via One-Dimensional Padé Approximation
The numerical solution of time-dependent ordinary and partial differential equations presents a number of well known difficulties—including, possibly, severe restrictions on time-step sizes for stability in explicit procedures, as well as need for solution of challenging, generally nonlinear systems of equations in implicit schemes. In this note we introduce a novel class of explicit methods ba...
متن کاملAnalysis of Probabilistic Systems via Generating Functions and Padé Approximation
We investigate the use of generating functions in the analysis of discrete Markov chains. Generating functions are introduced as power series whose coefficients are certain hitting probabilities. Being able to compute such functions implies that the calculation of a number of quantities of interest, including absorption probabilities, expected hitting time and number of visits, and variances th...
متن کاملColumn subset selection via sparse approximation of SVD
Given a real matrix A ∈ Rm×n of rank r, and an integer k < r, the sum of the outer products of top k singular vectors scaled by the corresponding singular values provide the best rank-k approximation Ak to A. When the columns of A have specific meaning, it might be desirable to find good approximations to Ak which use a small number of columns of A. This paper provides a simple greedy algorithm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Review
سال: 2013
ISSN: 0036-1445,1095-7200
DOI: 10.1137/110853236